Introduction and Literature Overview
Risk-based compliance is expected by regulatory agencies and 
			strongly recommended by industry task forces and private authors to 
			balance compliance efforts and costs vs. product quality and patient 
			safety. Risk management has a long history in the industry. For 
			example, when car manufacturers have a quality problem with specific 
			models in the market they will go through a thorough risk management 
			process to decide whether to recall the cars or not. The cost of 
			recalling and fixing the problem will be balanced against the cost 
			that may potentially occur through not doing anything and the effect 
			this would have on the company image and product liability issues. 
Risk assessment is also nothing new in our private life. We 
			experience this every day long before we start our daily work. 
			Before we cross a busy road on the way to our workplace, we look 
			left and right because there is a risk that a car may appear and run 
			us over. By observing car traffic and stopping until the car has 
			passed or looking for a pedestrian crossing or traffic lights we can 
			eliminate the risk that the car will hit us.
Objectives and Principles of Risk Management
Risk management is the process that helps to identify problems, 
			analyze them and then to create an action plan to avoid or manage 
			these problems. The objective of risk management during 
			pharmaceutical device and drug development and manufacturing is to 
			provide drugs and devices that are efficient and safe without 
			spending too many resources, for example, for validating processes 
			and equipment. 
All recommendations from official guidelines, from industry task 
			forces and from private authors basically follow the same principles 
			for risk assessment. 
- Identify the risks: What can go wrong?
- Analyze the risks: What is the likelihood or probability that something goes wrong and what are the consequences or what is the severity if something goes wrong?
- Estimate the risk priority number (RPN) and assess if the risk is acceptable or too high.
- If the risk is too high develop and implement control steps to reduce or eliminate the risk.
- Analyze the residual risk and assess if it is acceptable.
Let's look at the road traffic example we mentioned at the 
			beginning and use the same steps as above.
- Risk or unwanted event: Car runs over a pedestrian crossing the road.
- Probability of occurrence: Depends on the road traffic - low 
				for country roads, medium for town roads and high for city 
				streets.
 Severity: Always high, because the accident may lead to permanent injury or death.
- Risk level expressed by the risk priority number (RPN): Always high, because of high severity and some probability. The RPN increases from the country road to the city street due to increasing probability.
- Control steps to reduce probability: Depends on the risk 
				priority number. 
 - Country road: Look left and right before crossing the road.
 - Town road: Use pedestrian traffic lights or a pedestrian crossing.
 - City street: Use pedestrian overpass or underpass.
- Residual risk: Is acceptable because probability of occurrence has been reduced.
The effort to reduce the risk to an acceptable level increases 
			with the risk priority number. This is a simple example, but 
			illustrates the steps that are required to get safely across the 
			road. The principles can be applied to most risk scenarios.
The person crossing the road does not follow a formal and 
			documented process. She or he is using a practical approach which is 
			only based on experience and common sense. This way we can define 
			risk management for compliance as "well-justified and documented 
			common sense". Official guidelines and standards such as ICH Q9, ISO 
			31000 and others have listed a couple of important principles for 
			risk management.
Risk Assessment:
- Is an integral value of all organization processes, e.g., for compliance, security, health and safety.
- Is part of decision making, for example, whether to implement changes or not.
- Is systematic, structured and timely.
- Is based on the best available information, for example, on historical data and on science.
- Has the health and safety of patients in mind.
- Is aligned with a company's culture, strategies, risk profile and performance measures.
- Decisions should always be justified, documented and communicated to everybody affected by the project.
- Is an ongoing process to improve the efficiency of the organization.
Benefits and Issues for the Regulated Industry
The value of risk assessment for the regulated industry becomes 
			obvious from the diagram in Figure 1. On the x-axis it shows the 
			level of quality, validation or compliance of a product or process. 
			The y-axis shows decreasing risk, decreasing additional value and 
			increasing costs for validation and compliance.  

Figure 1: Risk Optimization vs. Quality and Cost
Doing nothing about compliance, quality or validation is a high 
			risk, for example, you may receive warning letters from the FDA, or 
			when looking at equipment, you may have high failure rates. Or even 
			worse, patients may get sick if a drug has too many adverse 
			impurities because of insufficient quality or validation of 
			processes and systems. Of course, the advantage is that in this case 
			there are no costs involved. When going to the right side of the 
			diagram everything is validated and the most stringent 
			interpretation is used for compliance and the costs get 
			exponentially high. The risk decreases but so does the additional 
			value, for example, from additional validation efforts. One of the 
			tasks of a risk management project is to find an optimum which 
			should be somewhere in the middle. 
For each process or piece of equipment the company should decide 
			how much risk can be taken. General recommendations should come from 
			the Risk Management Master Plan or directly from management for a 
			specific project. The question is how much risk a company can or 
			will take, or what is the acceptable risk threshold. The answer 
			depends on which direct impact equipment or a process has on the 
			drug or device product. For example, when looking at the drug value 
			chain from early research through preclinical and clinical 
			development to manufacturing, the direct impact on consumers 
			increases. Therefore, assuming everything is identical; the 
			validation effort for equipment used in manufacturing will be higher 
			than when the same equipment is used in early development. 
Similarly one can argue that the validation efforts during 
			quality control of an active pharmaceutical ingredient (API) can be 
			lower than for finished drugs, because API quality problems can 
			still be uncovered by the pharmaceutical manufacturer before the 
			product reaches patients through incoming checks of the API and 
			through quality control of finished drugs. 
The main benefit of quality risk management is that the regulated 
			industry can optimize resources towards high risk products, 
			equipment and processes and save resources for low or no risk 
			systems. This increases the overall efficiency and improves product 
			quality and patient safety. While in the past the regulated industry 
			hesitated in applying risk management, this changed since the United 
			States Food and Drug Administration (FDA) started promoting quality 
			risk management as part of its 21st century cGMP initiative along 
			with some follow-up activities. In light of this, the word 
			compliance can be eliminated from the x-axis in Figure 1, or at 
			least, compliance is not always proportional to validation because 
			with statements like: 'The type and extent of validation depends on 
			the risk on the drug product', 100% compliance can be achieved at 
			less than 100% validation.
The example used to illustrate the benefits of quality risk 
			management also brings up issues. QA and other professionals may 
			disagree that development activities and manufacturing of API's 
			don't require the highest focus on quality and validation. This is a 
			good point as long as we understand that risk management is always 
			relative with objective criteria such as direct impact on product 
			quality and patient safety. When looking at relative risks, quality 
			control of finished products bears a higher risk than equivalent 
			measures of API products or test samples from pre-clinical studies.
Objectives of the Tutorial
This tutorial addresses risk management in the 
			(bio)pharmaceutical and medical device industry. It is intended to 
			give project managers and other professionals from the 
			(bio)pharmaceutical and medical device industry a good understanding 
			of the objectives and principles of risk assessment and to guide 
			them through the risk management process. Quality managers and staff 
			as well as regulatory affairs professionals will also benefit 
			through extensive discussions of relevant regulations, quality 
			standards and guidelines. The tutorial will discuss tools and give 
			strategies and specific recommendations for all steps of risk 
			management such as risk identification, risk evaluation, risk 
			assessment and mitigation controls. 
In less than one day readers will get: 
- An overview of regulatory and quality standard requirements and recommendations.
- Tools and common practices available for risk assessment and management.
- Strategies for implementation with practical help on how to document the outcome.
- Recommendations for special applications, e.g., for laboratory systems, software and computer validation, equipment maintenance and qualification and for process validation.
From our experience in attending risk management workshops and 
			reading literature and Risk Management Master Plans and procedures 
			we realized that there is little practical information available on 
			how to identify, evaluate and document risks together with 
			documentation of failures, hazards, possible harms and justification 
			of risk priority numbers based on severity, probability of 
			occurrence and probability of detection. It seems that most authors 
			describe conceptual steps with little practical help. Also, official 
			documents such as ICH Q9 don't give detailed information. This 
			tutorial tries to fill this gap.
Literature Overview
Risk management for the (bio)pharmaceutical and device industry 
			has been widely documented in regulatory guidance, by industry task 
			forces and by private authors. This chapter lists some literature 
			publications with relevance to risk assessment and management in the 
			(bio)pharmaceutical and medical device industry.
- The European Council Directive 93/42/EEC of June 14 1993 Concerning Medical Devices (1) was one of the first regulatory documents that requested to eliminate risks as much as possible during the design and manufacturing of medical devices when weighed against the benefits to the patient.
- The US FDA Quality System Regulation (2) requested to validate the design of medical devices and that design validation should include risk analysis, as appropriate.
- The EU GMP Annex 15 for "Validation and Qualification" (3) requests a risk assessment approach to determine the scope and extent of validation and to evaluate the impact of the change of facilities, systems and equipment on the (medicinal) product including risk analysis.
- Risk-based compliance was an important element of the FDA's Pharmaceutical cGMP Initiative for the 21st Century in 2002 (4).
- Risk-based compliance was also a key component in the FDA's new approach for dealing with electronic records and signatures: 21 CFR Part 11 (5).
- Probably the single most important document related to risk management for the pharmaceutical industry is the ICH Q9 "Guide on Quality Risk Management" from 2005 (6). It describes a systematic approach for risk management and applies to drug development and manufacturing including laboratories.
- The World Health Organization Expert Committee on Specifications for Pharmaceutical Preparation published a paper entitled "Hazard and Risk Analysis in Pharmaceutical Products" (30). It provides general guidance on the use of Hazard Analysis and Critical Control Points (HACCP) to ensure the quality of pharmaceuticals.
- The Pharmaceutical Inspection Convention/Cooperation Scheme (PIC/S) gave an example of a methodology for implementing ICH Q9 in the pharmaceutical field (29).
Risk management is well known and practiced in many industries 
			and several industry task forces have developed guidance documents 
			that facilitate risk management. 
- In 2001 GAMP published the "Guide for Validation of Automated Systems (GAMP 4)" (7). Appendix M3 was dedicated to risk assessment. It mainly focuses on risk-based validation of computer systems.
- Its successor GAMP 5 was released in 2008 (8). The title: 'A Risk-Based Approach to Compliant GxP Computerized Systems' indicates that the entire guide is focused on risk-based compliance of computerized systems.
- The Global Harmonization Task Force (GHTF) has published a risk management guidance for the medical device industry titled: 'Implementation of Risk Management Principles and Activities within a Quality Management System' (9).
- In 2000 ISO published a standard 14971:2000: 'Application of Risk Management to Medical Devices'. Even though it was developed for medical devices the FDA also recommended the approach for pharmaceutical applications. The standard was updated in 2007 (10).
- In 2009 ISO released two more standards: ISO 31000 on "Risk Management Principles and Guidelines" (11) and ISO 31010 on "Risk Assessment Techniques" (12). Both standards are applicable to all industries.
Private authors and professional service providers have published 
			papers with general recommendations for risk management which are 
			also related to specific applications. 
- R. Jones (13) gave an overview of risk management for pharmaceutical development and manufacturing with an introduction to risk assessment techniques and with focus on probabilistic risk assessment (PRA).
- Campbell (14) discussed how quality risk management principles can be applied to achieve a practical equipment verification strategy.
- Several authors contributed to a book: "Risk Management in the Pharmaceutical Industry" (34). The book includes introductory chapters on regulatory requirements and risk management tools followed by a total of six case studies.
- J.L. Vesper (33) authored a book titled: "Risk Assessment and Risk Management in the Pharmaceutical Industry: Clear and Simple". The book gives an overview of the risk management process and some of the more commonly used risk assessment methods and tools. It also examines how the various tools can be applied to identifying hazards and evaluating their potential impact and effects.
- Huber (15) applied the concepts of risk management to the validation of commercial off-the-shelf computer systems.
- K. O'Donnel and A. Green described a risk management solution designed to facilitate risk-based qualification, validation and change control activities within GMP and the pharmaceutical regulatory compliance environment in the EU in two parts. Part I (35) gave an overview on fundamental principles and design criteria outlined in the process and Part II (36) focused on tools, structure limitations, principle findings and novel elements.
Most literature publications give a general overview on risk 
			management principles and also offer tools that help for easy 
			implementation. For example, Labcompliance offers a "Risk Management 
			Master Plan" (16), several SOPs (17-19) and case studies (20).
Regulations, Guidelines and Quality Standards
Regulatory agencies expect (bio)pharmaceutical risk management to 
			assess risks associated with development and manufacturing of 
			medicinal products. Industry and other task forces have developed 
			guidelines and standards that help them better understand and 
			implement risk management processes. This chapter gives an overview 
			of the most important regulations, guidelines and quality standards.
			
United States Food and Drug Administration (FDA)
FDA 21 CFR 820: Quality System Regulation (2)
This regulation was released for medical devices in 1996. The 
			regulation requires a risk-based design validation. 
- §30(g): Design validation. Each manufacturer shall establish and maintain procedures for validating the device design. Design validation shall be performed under defined operating conditions on initial production units, lots, batches or their equivalents. Design validation shall ensure that devices conform to defined user needs and intended uses and shall include testing of production units under actual or simulated use conditions. Design validation shall include software validation and risk analysis, where appropriate.
FDA Guidance: General Principles of Software Validation (2002) (21)
The guidance was developed for validation of software used in 
			medical devices. The FDA clearly spelled out the basic idea of 
			risk-based compliance: The validation efforts should be commensurate 
			with the complexity of the software design and the risk associated 
			with the use of the software.
- This guidance recommends an integration of software life cycle management and risk management activities. Based on the intended use and the safety risk associated with the software to be developed, the software developer should determine the specific approach, the combination of techniques to be used and the level of effort to be applied.
- The selection of validation activities, tasks and work items should be commensurate with the complexity of the software design and the risk associated with the use of the software for the specified intended use.
- For lower risk devices, only baseline validation activities may be conducted. As the risk increases additional validation activities should be added to cover the additional risk.
Pharmaceutical cGMPs for the 21st Century: A Risk-Based Approach (4)
With this document the FDA introduced risk management to the 
			pharmaceutical industry.
- Risk-based orientation: In order to provide the most effective public health protection, the FDA must match its level of effort against the magnitude of risk. Resource limitations prevent uniformly intensive coverage of all pharmaceutical products and production. Although the agency has already been implementing risk-based programs, a more systematic and rigorous risk-based approach will be developed.
FDA Guidance: Part 11, Electronic Records; Electronic Signatures - Scope and Application (2003) (5)
In this guidance the FDA documented the new approach for 
			electronic records and signatures. They recommended basing the 
			decision on how to implement key requirements of Part 11 on a 
			justified and documented risk assessment. 
- We recommend that you base your approach on a justified and documented risk assessment and a determination of the potential of the system to affect product quality and safety and record integrity.
- We recommend that your decision on whether to apply audit trails should be based on "a justified and documented" risk assessment.
FDA Guidance: Quality Systems Approach to Pharmaceutical CGMP Regulations (2006) (22)
Risk management is one of the focuses of this guidance. 
			Risk-based approaches are expected to be used for setting 
			specifications and process parameters, qualification of personnel, 
			selection of quality unit (QU) personnel and for supplier auditing.
- Quality risk management is a valuable component of an effective quality systems framework. Quality risk management can, for example, help guide the setting of specifications and process parameters for drug manufacturing, assess and mitigate the risk of changing a process or specification and determine the extent of discrepancy investigations and corrective actions.
- In a quality system, personnel should be qualified to do the tasks that are assigned to them in accordance with the nature of, and potential risk of, their operational activities.
- Although QU personnel should not take on the responsibilities of other units of the organization, these personnel should be selected based on their scientific and technical understanding, product knowledge, process knowledge and/or risk assessment abilities to appropriately execute certain quality functions (This quality systems feature is also found in the cGMP regulations, which identify specific qualifications, such as education, training and experience or any combination thereof (see 211.25 (a) and (b)).
- The quality systems approach also calls for periodic auditing of suppliers based on risk assessment.
- Although the cGMP regulations (211.180(e)) require a product review at least annually, a quality systems approach calls for trending on a more frequent basis as determined by risk.
- As with other procedures, audit procedures should be developed and documented to ensure that the planned audit schedule takes into account the relative risks of the various quality system activities, the results of previous audits and corrective actions, and the need to audit the complete system.
European Regulations
The Council Directive 93/42/EEC of 14 June 1993 Concerning Medical Devices (1) requires a risk-based design and manufacture validation and reducing risks to acceptable levels.
- The devices must be designed and manufactured in such a way that when used under the conditions and for the purposes intended, they will not compromise the clinical condition or the safety of patients, or the health and safety of users or, where applicable, other persons, provided that any risks which may be associated with their use constitute acceptable risks when weighed against the benefits to the patient and are compatible with a high level of protection of health and safety.
- The solutions adopted by the manufacturer for the design and 
				construction of the devices must conform to safety principles, 
				taking account of the generally acknowledged state of the art. 
 In selecting the most appropriate solutions, the manufacturer must apply the following principles in the following order:
 - Eliminate or reduce risks as far as possible (inherently safe design and construction).
 - Where appropriate take adequate protection measures including alarms if necessary.
 - In relation to risks that cannot be eliminated, inform users of the residual risks due to any shortcomings of the protection measures adopted.
Annex 15 to the EU GMPs Validation and Qualification (3) has legal status. It uses risk-based approaches to validation and for changes to facilities, systems and equipment.
- A risk assessment approach should be used to determine the scope and extent of validation.
- The likely impact of the change of facilities, systems and equipment on the product should be evaluated, including risk analysis.
Annex 11 to the EU GMPs Using Computerized Systems (23) requires to base controls for computerized systems on a justified and documented risk assessment. Once finalized the Annex will have legal status.
- Extent of validation and data integrity controls should be based on a justified and documented risk assessment.
Pharmaceutical Inspection Convention/Cooperation Scheme (PIC/S)
The PIC/S Good Practices Guide on using Computers in GxP Environments (24) was developed for inspectors but it is also a good source document for user firms. Risk-based approaches are recommended throughout the life of a computer system.
- For GxP regulated applications it is essential for the regulated user to define a requirement specification prior to selection and carry out a properly documented risk analysis for the various system options.
- The inspector will consider the potential risks as identified and documented by the regulated user, in order to assess the fitness for purpose of the particular system(s).
- This risk-based approach is one way for a firm to demonstrate that they have applied a controlled methodology to determine the degree of assurance that a computerized system is fit for its purpose. It will certainly be useful evidence for consideration by an inspector.
- Regulated users should be able to justify and defend their standards, protocols, acceptance criteria, procedures and records in the light of their own documented risk and complexity assessments, aimed at ensuring fitness for purpose and regulatory compliance.
- The business/GxP criticality and risks relating to the application will determine the nature and extent of any assessment of suppliers and software products.
- The URS should also form the basis for a risk assessment of the system for GxP compliance requirements, in addition to other risks such as safety. The risk analysis may be based on the FS, which is related to the URS (e.g. for bespoke systems). The risk assessment and the results including the reasons for the ranking as either: 'critical' or 'non-critical' should be documented. The nature of any GxP risks should be clearly stated.
- The risk analyses and the results, together with reasoning for critical or non-critical classifications should be documented. Risks potentially impacting on GxP compliance should be clearly identified.
- Inspectors will be interested in the company's approach to identifying GxP risks and the criteria for assessing the fitness for purpose of the system application.
An informal Working Group within PIC/S has developed an objective 
			and pragmatic example of methodology for implementing ICH Q9 (29). 
			The document is useful for training purposes and will not have an 
			impact on PIC/S inspections. 
United States Pharmacopeia (USP)
USP develops methodology for specific applications and general 
			chapters on different analytical aspects for FDA regulated industry. 
			Most recently published final and draft chapters recommend risk 
			benefit approaches for testing and using solvents.
- <232> Elemental Impurities (Proposal)
 The presence of unexpected elemental contaminants, as well as that of impurities likely to be present, should be considered in determining compliance and planning the risk-based extent of testing. 232>
- <467> Residual Solvents
 Solvents that are known to cause unacceptable toxicities should be avoided in the production of drug substances, excipients or drug products unless their use can be strongly justified in a risk benefit assessment.467>
International Conference for Harmonization
ICH Q9: Quality Risk Management (6) is the single most important reference document for risk management for the pharmaceutical industry. ICH focuses on scientific knowledge and the link to the protection of the patients as a primary principle. The guide also gives recommendations for implementation.
- Two primary principles of quality risk management are:
 - The evaluation of the risk to quality should be based on scientific knowledge and ultimately linked to the protection of the patient; and
 - The level of effort, formality and documentation of the quality risk management process should be commensurate with the level of risk.
- It is neither always appropriate nor always necessary to use a formal risk management process (using recognized tools and/or internal procedures e.g., standard operating procedures). The use of informal risk management processes (using empirical tools and/ or internal procedures) can also be considered acceptable.
ICH Q9 has been adopted by the European Union and PIC/S in Annex 
			20 of the EU and PIC/S GMP Guides. 
International Organization for Standardization (ISO)
ISO currently has three standards related to risk management: 
			14971 for medical devices and 31000 and 31010 which are for general 
			purpose risk management projects. ISO 31000 describes principles and 
			guidelines and 31010 risk assessment techniques. 
ISO 14971:2007 - Application of Risk Management to Medical Devices (10)
This document was developed for medical devices but has also been 
			recommended by FDA officials for pharmaceutical industry. 
- This International Standard specifies a process for a manufacturer to identify the hazards associated with medical devices (including in vitro diagnostic (IVD) medical devices), to estimate and evaluate the associated risks, to control these risks and to monitor the effectiveness of the controls.
- The requirements of this International Standard are applicable to all stages of the life cycle of a medical device.
- This International Standard does not apply to clinical decision making.
- This International Standard does not specify acceptable risk levels.
- This International Standard does not require that the manufacturers have a quality management system in place. However, risk management can be an integral part of a quality management system.
ISO 31000:2009 - Risk Management - Principles and Guidelines (11)
- This International Standard provides principles and generic guidelines on risk management. It can be used by any public, private or community enterprise, association, group or individual. Therefore, this International Standard is not specific to any industry or sector.
- This International Standard can be applied throughout the life of an organization and to a wide range of activities, including strategies and decisions, operations, processes, functions, projects, products, services and assets.
- This International Standard can be applied to any type of risk, whatever its nature, whether having positive or negative consequences.
- Although this International Standard provides generic guidelines, it is not intended to promote uniformity of risk management across organizations. The design and implementation of risk management plans and frameworks will need to take into account the varying needs of a specific organization, its particular objectives, context, structure, operations, processes, functions, projects, products, services or assets and specific practices employed.
- It is intended that this International Standard be utilized to harmonize risk management processes in existing and future standards. It provides a common approach in support of standards dealing with specific risks and/or sectors and does not replace those standards.
- This International Standard is not intended for the purpose of certification.
ISO 31010:2009 - Risk Assessment Techniques (12)
- This International Standard is a supporting standard for ISO 31000 and provides guidance on selection and application of systematic techniques for risk assessment.
- Risk assessment carried out in accordance with this International Standard contributes to other risk management activities.
- The application of a range of techniques is introduced, with specific references to other International Standards, where the concept and application of techniques are described in greater detail.
- This International Standard is not intended for certification, regulatory or contractual use.
- This International Standard does not provide specific criteria for identifying the need for risk analysis, nor does it specify the type of risk analysis method that is required for a particular application.
- This International Standard does not refer to all techniques and omission of a technique does not mean it is not valid. The fact that a method is applicable to a particular circumstance does not mean that the method should necessarily be applied.
Approaches for Risk Management
Alternatives
Risk management can be very simple and straightforward but it can 
			also be quite complex. For example, risk assessment of equipment can 
			be documented in just one paragraph with a simple statement such as: 
			The risk level is low because the equipment does not have any impact 
			on the quality of the finished product. For a more complex computer 
			system used in pharmaceutical manufacturing, a full risk management 
			may require an assessment of the criticality of each function with a 
			need for testing if the function has a high impact on the system 
			performance. 
Similarly the vendor risk can be justified and documented on a 
			single page if the vendor meets all criteria as required for low 
			risk vendors. This does not take more than five to ten minutes. On 
			the other hand a full risk management for a pharmaceutical 
			development or manufacturing process can take quite some time and 
			can fill one hundred pages or more. Whether the process and 
			documentation is simple or complex it is always most important that 
			it follows a formal procedure and that the outcome and conclusion 
			are justified and documented. The risk management process as 
			applicable to the (bio)pharmaceutical and device industry has been 
			described in several official publications, for example ICH, GHTF 
			and ISO (6, 9 and 10) and by private authors. All proposals for risk 
			management include steps such as risk initiation, risk assessment 
			and evaluation, risk mitigation and control and risk communication 
			and review. This chapter outlines the ICH Q9 process and gives 
			recommendations for estimating severity and probability.
The ICH Process
ICH Q9 is the most authentic document for risk management in the 
			(bio)pharmaceutical industry. The guide describes quality risk 
			management as a systematic process from the assessment, control, 
			communication and review of risks to the quality of the drug along 
			the product life cycle. The guide also outlines an example model for 
			quality risk management but includes a statement that other models 
			are also possible. The example model is illustrated in Figure 2. 
Risk management projects can be proposed by anybody in an 
			organization whenever there is a need for such a project and the 
			proposal is justified. The proposal should describe any problem with 
			background information and examples for data on potential hazards 
			and harms. 

Figure 2: Risk Management Process According to ICH Q9 
The project is reviewed, approved and supported by management. 
			Management also identifies a project owner who, with the help of 
			affected department managers, assembles a risk management project 
			team. The team develops a risk management project plan with 
			information on process steps, required resources, tasks, 
			deliverables and responsibilities. The plan should also include a 
			preliminary timeline. 
In the risk assessment phase the team identifies hazards and 
			harms and evaluates severity and probability based on criteria as 
			defined in the company's Risk Management Master Plan. 
Questions team members should ask are:
- What might go wrong?
- What is the likelihood (probability) that it will go wrong?
- What are the consequences (severity) if something does go wrong?
The outcome from this phase is a group of risk priority numbers 
			(RPNs) calculated from severity and probability. Alternatively ICH 
			permits a qualitative description of the terms, for example 'high', 
			'medium' or 'low'. The qualitative description or risk number can be 
			compared with risk acceptance criteria as generally defined in the 
			Risk Management Master Plan or by management specifically for the 
			project. If the risk number or corresponding qualitative description 
			exceeds the acceptable risk this is reduced. After reduction the 
			residual risk is evaluated again and accepted if the resulting risk 
			is lower than the acceptable risk.
The outcome of the risk management process is communicated to all 
			decision makers and any others who might be affected by this 
			process. The process is reviewed for existing and possible new 
			hazards on an ongoing basis. For example, new hazards may be 
			identified or the defined level for probability may change. 
			Everybody affected by the project is encouraged to actively monitor 
			the process and give feedback for possible updates. 
Criteria for Severity, Probability and Risk Acceptance
Defining a process and objective criteria for severity (S) and 
			probability (P) and criteria for risk acceptance is most important 
			for risk assessment. Neither international standards nor regulatory 
			guidance documents require that a particular method is used. 
			Severity in general means: How big is the problem if it occurs? 
			Probability means: What is the likelihood that a problem occurs? For 
			each identified hazard the probability and severity factors are 
			estimated and associated to different categories. The number of 
			categories is usually 3, 5 or 10 but can be any number up to or more 
			than 10. ICH does not give any preference. The company's risk 
			management should give recommendations on how to decide how many 
			levels should be used. The number can be fixed in the master plan 
			for all projects or you can allow two or three options. For example, 
			the final number for a specific project could be dependent on the 
			confidence of the estimates.
The first part of this chapter suggests a procedure to estimate 
			severity, probability and the overall risk of an identified hazard. 
			The second part has recommendations on how to define objective 
			criteria and a process for assigning levels for probability and 
			severity. 
Procedure for Estimating Probability and Severity
The scales can be qualitative, quantitative or semi-quantitative. 
			Unless there are thorough statistical or other reliable data 
			available, the scales should be defined as qualitative. An example 
			for a qualitative description of probability would be 'high', 
			'medium' or 'low'. Equivalent semi-quantitative expressions would 
			be, for example, 'once a day', 'once a week' or 'once a month'. 
			Figure 3 shows more examples for qualitative and semi-quantitative 
			descriptions for severity and Figure 4 shows equivalent examples for 
			probability.
| Qualitative | Semi-Quantitative | Quantitative | 
| Very high | Frequent Likely to happen | Every day | 
| High | Probable | Every 3 days | 
| Medium | Occasionally | Every week | 
| Low | Can happen | Every 3 weeks | 
| Very low | Improbable | Every 2 months | 
Figure 3: Examples for Qualitative, Semi-Quantitative and 
			Quantitative Risk Categories for Probability
| Qualitative | Semi-Quantitative | 
| 
 | 
 | 
| 
 | 
 | 
| 
 | 
 | 
| 
 | 
 | 
| 
 | 
 | 
Figure 4: Examples for Qualitative and Semi-Quantitative Risk 
			Categories for Severity
Probability of detection has also been suggested as a risk 
			measure. This is an option but it is not a must. One can argue that 
			severity factors increase if the probability of detection is low. It 
			should be considered under specific conditions to decide whether the 
			risk could be included or not.
It is most important to make the risk analysis and evaluation as 
			objective as possible. A frequent mistake is that individual members 
			tend to rate everything as high risk. One way to ensure objectivity 
			across an organization is to take assessment criteria and examples 
			for severity from the corporate Risk Management Master Plan. The 
			probability data should be derived from available empirical data of 
			the same or similar systems or processes. If such data are not 
			available then the most unfavorable situation should be used for the 
			initial risk assessment.
Documentation of the severity factors should include a scientific 
			justification. After all the risks have been discussed and rated, 
			the team reviews them for relative comparison. Adjustments should be 
			made for RPNs that are considered to be out of order.
Graphical Determination of the Overall Risk
After values for severity and probability have been assigned, the 
			overall risk is determined. This can be done graphically as shown in 
			Figure 5. Severity levels low, medium and high are drawn as columns 
			and probability as rows. All cells in green are low risk, in yellow 
			medium risk and cells in red are defined as high risk. 

Figure 5: Graphical Determination of Risk 
The equivalent graph including detectability is shown in Figure 
			6. Risk as identified in Figure 5 is drawn using detectability as 
			columns starting with high on the left.

Figure 6: Graphical Determination of Risk including Detectability
Determination of the Overall Risk with Risk Priority Numbers
Levels for severity as described before can be converted to 
			numbers, for example 'low' becomes a 1, 'medium' a 2 and 'high' a 3. 
			This is especially convenient for assigning the risk for routine 
			applications for the determination of the overall risk. 
Risk priority numbers (RPNs) are calculated from severity and 
			probability levels using the formula:
RPN = Severity (S) x Probability (P)
Risk (RPN) is expressed as the multiplication of severity with 
			occurrence: 
RPN = S x O.  
In the example in Figure 5 the RPN can go from 1 in the left lower cell to 9 
in the right upper cell. RPNs from 1 to 2 are equivalent to low, 3 to 5 are 
medium and 6 to 9 are high risk. 
This procedure is much more flexible than the graphical 
			determination. For example, for specific situations weight factors 
			can be added to probability and/or severity. In this case the 
			formula could look like:
RPN = 2S x P
This means the impact is double weighted compared to probability.
			
Another advantage of using numerical values is that multiple risk 
			types can easily be combined. For example, non-patient related 
			business risk can be combined with patient risk using the formula:
RPN = S x (P (Business) + S x P 
			(Patient))
Again weight factors can be added, for example, if the patient 
			risk is considered to be more important than non-patient related 
			business risks.
This procedure also easily allows using detectability as a 
			contributing factor to the overall risk. But first, categories for 
			the detectability have to be assigned. Then categories have to be 
			converted to numbers. The resulting formula is:
RPN = S x P x 1/D
Working with calculated numbers is very easy but unless there is 
			a good description about the meaning they don't tell us anything 
			about the absolute risk. This could cause problems when values for 
			severity, probability and detectability are initially assigned. 
			Therefore, a good practice is using qualitative or quantitative 
			descriptions during initial ranking and then allocating numbers to 
			the descriptions. 
Estimating Severity of Potential Harms
There are several factors that contribute to the severity of 
			potential harms in the (bio)pharmaceutical and device industry. The 
			final ranking is derived from individual factors. ICH Q9 recommends 
			using patient safety as the main criterion and basing the decision 
			on estimating levels on a scientific judgment.
Factors contributing to severity typically include: 
Impact on Product Quality
The question here is if the potential harm has a direct impact on 
			product quality, which means that any failure cannot be corrected 
			before a new drug or a device product is approved for marketing or 
			before a batch is released for shipment. In this case the 
			probability of detecting the problem is low or zero. An example is 
			an analysis system used in a quality control laboratory where 
			analysis results are used as criteria whether to release a batch or 
			not. 
Impact on People's Health and Safety
Poor product quality as discussed in the previous paragraph only 
			plays an important role if the poor quality can have an adverse 
			impact on consumers. This directly turns into health effects for 
			patients. An example for high severity is when poor product quality 
			can cause sickness that requires treatment in a hospital.
Impact on Business Continuity
This is related to a company's ability to timely market a new 
			product and reliance on the system and process uptime for continuous 
			shipment of products. The answer for the level comes from the 
			question: How big is the loss in $ due to delays in new product 
			approval or shipment stoppages?
Impact on Compliance
This is related to the risk of failing regulatory inspections and 
			receiving single or multiple warning letters or inspectional 
			observation reports. Consequences can be shipment stops, substantial 
			amounts of reengineering to fix problems and resources to implement 
			corrective actions. 
There are other indirect factors like claims by end-users, 
			product liability issues, product recalls and a company's 
			reputation, e.g., if problems with product quality or compliance 
			become public.
Estimating Probability of Potential Harms
Probability should answer the question: What is the likelihood 
			that an identified hazard occurs? Probability should be expressed in 
			occurrence per time. The main source for reliable probability data 
			is experience with the same or similar process or system. One 
			important point is that we should look at the circumstances and 
			complete sequence from the occurrence of the hazard through to the 
			occurrence of the harm. A specific hazard may not always cause harm.
The probability should be estimated by subject matter experts. 
			Possible sources of data are:
- Historical data from using the same process or system.
- Historical data from using a similar process or system.
- For equipment and systems: Information from the vendor, for example, reliability estimates, costs for guaranteed uptime and extended warrantee.
- Initial production data.
Sources can be used individually or jointly. Preferably multiple 
			sources should be used to increase the confidence level.
Estimates are very difficult to make when no historical data are 
			available. As a workaround you can ask if within the same company 
			either at the same or other sites adequate data are available. Even 
			if the information cannot be copied 100% you can look at 
			similarities and differences and add uncertainties accordingly.
Most critical is the situation for new systems. In this case 
			estimates from the supplier can be used to judge what could possibly 
			go wrong. However, this requires having a very good relationship 
			based on trust with the supplier. 
If no data are available the probability level should be based on 
			the worst case estimates.
Risk Threshold
The risk threshold is a measure on how much risk a company is 
			willing to take. It is expressed on a scale of very low risk 
			tolerance to very high risk tolerance. A low risk threshold means a 
			company is not willing to take a risk and a high threshold means the 
			company is willing to accept a lot of risk. The RT is proposed by 
			the project team for each risk management process and should be 
			approved by management. For example, when looking at computer system 
			validation the risk threshold is higher for a system used in early 
			product development than when the same system is used in 
			manufacturing control. Similarly processes used in API manufacturing 
			can take higher risk factors than processes for manufacturing of 
			drugs because of additional quality control of finished drugs that 
			can also recover quality problems of APIs. Recommendations on how to 
			apply the RT and examples should be documented in the Risk 
			Management Master Plan. 

Figure 7: Risk Priority Number vs. Risk Threshold
The relationship between the RPN and the RT is shown on two 
			examples in Figure 7. On a scale of 0 to 10 the risk factor is 
			determined as approximately 6. In Example 1 this RPN is higher than 
			the RT (approximately 3) which means it should be reduced to below 
			3. In Example 2 the RPN is lower than the RT, so it is acceptable. 
			This procedure requires that the RPN and RT numbers should be 
			normalized to exactly the same range.
Tools and Methodologies for Risk Management
Tools are important to make the entire risk management process 
			efficient and consistent. They can be as simple as templates in 
			Microsoft Word or Excel that can be filled out by risk management 
			team members and other individuals to identify hazards and harms and 
			to justify and document risk priority numbers and mitigation steps. 
			Tools can also include software to guide risk management 
			professionals through the full risk assessment process. The most 
			well-established formal tools for risk assessment are: Failure Mode 
			Effect Analysis (FMEA), Fault Tree Analysis (FTA), Preliminary Risk 
			Analysis (PRA), Hazard, Hazard Operability Analysis (HAZOP) and 
			Hazard Analysis and Critical Control Points (HACCP). Formal tools 
			can be categorized into deductive and inductive tools. Inductive 
			techniques answer the question: What if something bad happens? 
			Deductive techniques look at a specific problem and answer the 
			question: What caused it to happen? An example for an inductive tool 
			is FMEA and an example for a deductive tool is FTA. 
While these formal tools often proved to be efficient and 
			reliable in risk assessment and risk control of specific projects, a 
			systematic use of these tools to address all areas with requirement 
			for risk assessment would generally be incompatible with existing 
			resources. ICH Q9 also has a comment about using tools: "It is 
			neither always appropriate nor always necessary to use a formal risk 
			management process (using recognized tools and/or internal 
			procedures e.g., standard operating procedures). The use of informal 
			risk management processes (using empirical tools and/or internal 
			procedures) can also be considered acceptable". While in the past 
			more empirical tools have been used there is a tendency nowadays to 
			use more established formal tools.  
All tools, whether they are simple or complex have one 
			disadvantage: They do not replace subject expert knowledge! The 
			output is only as good as the input. Most important is that inputs 
			should not only come from single individuals but also from a risk 
			management team that has all the required knowledge and expertise. 
This chapter will describe some of the most frequently used 
			tools. The first section describes examples of informal tools that 
			are mainly used to document experience. They include tables, 
			templates, forms and examples and also a Risk Management Master 
			Plan, internal procedures, a risk database and software tools. In 
			the second part of the chapter we describe and move on to more 
			sophisticated and well-established methodologies. Figure 8 lists 
			some of the most well-known methodologies with advantages and 
			limitations.
| FTA | FMEA / FMECA | HACCP | PHA / PRA | |
| Principle | Graphical, deductive, structured tool. | Structured inductive tool, can be qualitative and quantitative. | Prevent known hazards to reduce risks at specific CPs. | Qualitative inductive tools. | 
| Advantages | Visual fault tree diagrams with standardized symbols to show the pathway from basic events to the undesired event. | Very universal and scalable, e.g., for high level and detailed risk assessment. | Full risk 
					management process. Specific and flexible. Focus on prevention. Record keeping answers product liability and compliance questions. | Easily adaptable to most situations. | 
| Limitations | Can quickly become very complex because it looks at one failure at a time. | Tool does not 
					consider operational issues or operator performance. Does not show interaction between events. | Requires detailed information on the product and process. | Relative unstructured, therefore may miss potential hazards. | 
| Tool | Graphics with standardized symbols. Dedicated software recommended. | Tables. | Detailed process diagrams. Tables. | Drawings and tables. | 
| Main Application and Use | Used to define a 
					particular undesired event and identify its causes (basic 
					events). For potential problems with serious impact. | Universal use, 
					e.g., medical device, hospitals. Used to identify known and potential failure modes and impact on processes, facilities and equipment. Used during design and operation. | Food and chemical 
					industry. Adapted for pharmaceutical industry by WHO. Covers full product chain. | Used early in new 
					products and changes in products and processes (design 
					phase). Chemical industry. First step of complex risk assessments. | 
Figure 8: Formal Risk Management Methodologies
Informal Tools
Informal tools are simple and easy to use. They are recommended 
			for processes that are not so complex and if there is not much 
			experience with risk assessment within a company. They are useful to 
			make all risk assessment and management processes consistent and 
			effective. They are also quite useful to generate preliminary 
			documentation which is used when making the decision to stop or when 
			moving a risk management project forward to a more detailed risk 
			management using established methodologies. 
The Importance of a Generic Risk Management Master Plan
One of the biggest challenges in risk management is to make 
			assessment objective which means make it independent from subjective 
			opinions of individuals who may look at risk from just one angle. 
			Legislation does not give any solution to this specific problem and 
			different risk methods as well as private authors give different 
			answers to the problem. 
For example, recommended numbers for probability range from 0 to 
			1, to 5 or to 10 and severity can vary from 1 to 3, 5 or 10. Some 
			methods include "detectability" or "discovery probability" in the 
			formula and there is even inconsistency in the formulas used for 
			calculation. The subjectivity problem has also been brought up by 
			ICH Q9: Each stakeholder might perceive different potential harms, 
			place a different probability on each harm occurring and attribute 
			different severities to each harm.
However, while it may be very difficult to get a common 
			understanding across the industry on the formal process and criteria 
			to assess a risk, it should be possible to get this understanding 
			within a company. The outcome of the same risk assessment process 
			should be consistent within a company, no matter who is doing it.
Master plans in general are excellent tools to get a common 
			understanding on specific topics. For example, validation master 
			plans are well accepted and frequently used to ensure consistency 
			and effectiveness of validation projects. Risk Management Master 
			Pans with specific examples are even more important to also ensure 
			objectivity for criteria such as severity and probability. As such a 
			Risk Management Master Plan provides a framework and practices for 
			risk management of processes and equipment. It also ensures that 
			risk assessment and controls are carried out efficiently and 
			consistently throughout the organization as well as meeting 
			regulatory, customer, quality and business requirements. The plan 
			should ensure that the company's risk management procedures are 
			based on science and that they are understood and followed 
			throughout the organization.
The risk management document is the first and most important 
			document that should be available when starting individual risk 
			management processes. It is the basis of individual Risk Management 
			Project Plans and is the reference document for all risk management 
			projects, no matter which risk management methodology is used. 
This master plan describes: 
- The company's risk management policy.
- The links between the company's organizational objectives and policies and the risk management policy.
- Relationship of the risk management plans with other documents, e.g., validation master plans or quality manual.
- The approach to the company's risk management process.
- Members of risk management teams (by function).
- Responsibilities of the project leader and team members.
- Products and processes that should be covered by risk management.
- Contents of individual Risk Management Project Plan.
- Detailed steps for risk management.
- How the likelihood is defined.
- How to identify risk levels.
- Factors contributing to high and low severity.
- Definition and determination of RPNs with examples.
- Criteria and examples for acceptable risk thresholds.
- How to make a high-level risk assessment.
- Communication of project status and outcome of risk management processes.
- Frequency and procedures for ongoing review.
The Risk Management Master Plan should be developed by a 
			cross-functional team at the highest level possible. Preferably the 
			corporate QA department should own the project and also ensure that 
			the concepts are implemented for individual quality risk management 
			projects. 
Procedures
Step-by-step procedures should be developed for initiating, 
			implementing and updating individual application-specific risk 
			management projects. Examples are risk-based supplier assessment, 
			risk-based computer system validation or risk-based testing of 
			starting materials for drug manufacturing. Development and use of 
			such procedures should be controlled by corporate quality assurance 
			to ensure consistent use throughout the organization. 
Templates and Forms
Templates and forms with examples and process flow charts are 
			simple but valuable tools to improve consistency and efficiency for 
			risk identification, evaluation and control. They can be part of 
			SOPs or the Risk Management Master Plan or they can be individual 
			documents. Examples are specifically important to give advice on 
			ranking risk elements such as probability, detectability and 
			severity.
Examples and Case Studies
As organizations gain experience with risk management projects 
			and after several projects have been executed, a library with 
			representative examples should be developed. The examples help risk 
			management project managers and teams to identify, evaluate and 
			control risks. The library should include both good and bad 
			examples. Each example should include recommendations on how to 
			proceed with similar projects. 
Checklists
Checklists are lists of hazards, possible harms and controls that 
			have been developed from experience either as a result of previous 
			assessment projects or as a result of past failures or from daily 
			product or process support. For example, the IT help desk can 
			generate such a list for various computer systems. The value of 
			checklists is not to forget common important hazards and control 
			steps.
Risk Database
A corporate database with examples for risk hazards and harms 
			within a company helps to facilitate the collection and maintenance 
			of risk data. Relative risk priority numbers for severity and 
			probability and mitigation steps also help to harmonize assessment 
			within a company. While initially there may be no or very little 
			data, such a database will provide increased value over time when 
			databases are populated with data from more risk management 
			projects.
			
Software for Risk Assessment and Risk Management
To be added later
Failure Modes, Effects and Criticality Analysis (FMECA)
Failure Modes and Effects Analysis (FMEA) evaluates a product 
			process for strengths and weaknesses, for potential problem areas, 
			risks or failure modes and prevents failures before they occur. 
			FMECA adds evaluation of the criticality including severity, 
			occurrence and detectability and tries to answer the questions:
- How can a product or process fail?
- What is the likelihood that it fails and if so, what is the likelihood that the failure will be detected? and,
- What will be the effect on the rest of the process or system if a failure occurs and is not detected such that it can be corrected?
FMEA has the highest impact and should be performed during design 
			or development of a product or process when failures are less 
			expensive to address. It can be a powerful tool to improve product 
			reliability and reduce design, development and manufacturing costs. 
			FMEA is a bottom up approach to failure mode analysis. It can be 
			used to evaluate failures that can occur when designing or running a 
			process, or when designing, developing or operating equipment. FMEA 
			helps to design and manufacture a trouble-free product. Identified 
			failures in a product or process are corrected before they occur to 
			ensure trouble-free functioning and operation. 
Applications
FMEA and FMECA are the most generic risk management methodologies 
			and can be applied to a large variety of applications.
For example, they can be used during design and manufacturing of 
			equipment as well as to set up and optimize qualification and 
			maintenance plans for equipment. During design FMEA can help to 
			select the best design alternative and improve the design of 
			procedures and processes. Both methodologies are also used as a 
			preliminary screening method for complex risk management before the 
			project is moved forward to more time-consuming methodologies.
Advantages and Limitations
FMEA and FMECA have many advantages. They include:
- Wide applicability from design to manufacturing, servicing and maintenance of mechanical and electronic equipment.
- Identifies failure modes, their causes and effects on the system.
- Ideal for simple to medium complex systems.
Limitations include:
- Optimized for single individual failure modes, but they don't work well for combinations of failure modes.
- Can be time-consuming for complex systems.
Assessment Process
FMEA and FMECA require a very good knowledge of the product or 
			process. The assessment process is the same as described in Figure 
			10. 
- Select a team and team leader. All team members must be subject matter experts.
- Select the FMECA form from the company's Risk Management Master Plan or if not available, create one.
- Train team members on the process and on criteria for ranking likelihood of occurrence and impact of failure when it occurs.
- Make the team members familiar with the design of the product or process to ensure that all team members have the same understanding. This can be through distributing product and process documentation supported by flow diagrams.
- Set up one or more brainstorming meetings. Multiple sessions are recommended for complex product/process designs. Individual sessions can focus on subsets of the entire product/process.
- Brainstorm the product or process design for possible failures. Document the outcome on a flipchart.
- Sort all suggested failures by categories.
- Combine or remove similar or duplicate entries.
- Document potential effects on the system, subsequent operation and end user (e.g., patient).
- Assign rating factors for each identified severity, occurrence and detectability. Definition and scale of rating factors should be taken from the company's Risk Management Master Plan not only to ensure objectivity and consistency with the project team but also with other risk management projects. Justify the rating with reference to the plan. For occurrence, historical data from the same or similar projects can be used.
- For each identified effect list all possible causes of failures with justifications and with all uncertainties.
- Calculate the risk priority number using the formula from the Risk Management Master Plan. The RPN is a measure for the overall risk associated with the project.
- Take actions to reduce potential critical risks.
- Assign owners, a schedule and deliverables for the actions.
- After the action has been implemented make a new rating for severity, occurrence and detection and calculate the RPN.
In the brainstorming meeting the risk management team identifies 
			all possible failures. Most important for new products and processes 
			is information from the engineers who have designed the product or 
			process even though they may hesitate in admitting that failures may 
			occur. For products that have been in use for some time the user of 
			the products and support engineers are excellent resources. They can 
			not only provide good information on which failures may occur but 
			they can also predict the likelihood of occurrence and the severity 
			of a failure. 
The overall risk number is calculated from the probability and 
			severity and the decision is made on which potential failures 
			require risk reduction. Possible follow-up actions could be redesign 
			of products or processes such that either the probability of 
			occurrence or severity factors are reduced such that the overall 
			risk priority number is also reduced. 
Fault Tree Analysis (FTA)
Fault Tree Analysis is a deductive tool that assumes a failure of 
			the functionality of a product or process. It can be used as a 
			qualitative and quantitative structured tool. It is used to define a 
			particular event and identify its causes. Results are graphically 
			visualized in a tree of fault modes and this is where the name comes 
			from. The diagrams can be used to identify the pathways from the 
			base events to the undesired events. The methodology is particularly 
			useful to examine problems with equipment, facilities and 
			operational conditions. 
FTA identifies the potential root cause(s) ('basic events') of 
			the specific problem or hypothetical event. Problems can be caused 
			by design and engineering defects and also by human factors. When it 
			is unlikely that the root cause is not just based on single-base 
			events, 'cut sets' of all scenarios can be defined which can cause 
			the top event. 
Advantages and Limitations
FTA has advantages and limitations.
Advantages are:
- Highly systematic but also flexible.
- The 'top-down' approach focuses attention on the failure effects which are directly related to the top event.
- Useful for analyzing systems with many interfaces.
- Pictorial representation helps to easily understand the system behavior.
Limitations are:
- Uncertainties in the probability of the base events are included in the calculations of the probability of the top event.
- The static model does not address time interdependencies.
- Fault trees can only deal with binary states (failed/not failed).
Steps for FTA Analysis
Steps for FTA analysis include:
1. Form a Team and Determine a Team Leader
Team members should be experts in the application, and either 
			have knowledge and experience in FTA methodology or get trained; 
			with emphasis on how to interpret standardized symbols used in a 
			flow chart. 
2. Definition of a Problem and Justification of the Project
Define the event or describe what it is that should be prevented. 
			Because the amount of work for a complex FTA analysis can be 
			significant, the primary reason for the project should be well 
			justified. The definition should also clearly describe the scope and 
			boundaries of the project. Most important is to clearly define the 
			top event and to keep it in line with the project scope. 
3. Construction of the Fault Tree
After team members have acquired all the information about the 
			process, list all possible root causes that could lead to the 
			unwanted event. These "basic" events are linked through 
			"intermediate" events to the top event in a flow chart. For the 
			connection between top and basic events defined logical pathways 
			should be used. A basic event can cause the unlikely event (top 
			event) on its own or in combination with others (cut sets). 
4. Evaluate the Fault Tree
This step prioritizes basic events based on probability data. 
			That kind of prioritization is only useful if such data are 
			available.
5. Prepare a Report
The report should include a description and scope of the project, 
			a system description, all relevant process flow diagrams, fault tree 
			analysis listings and the FTA flow chart. It should also include a 
			conclusion of the analysis related to the original question.
Hazard Analysis and Critical Control Points (HACCP)
The Hazard Analysis and Critical Control Points (HACCP) method 
			originated from a food management system. The objective is to ensure 
			food safety through identifying and preventing known hazards and 
			risks as they may occur at specific points in the food chain. As 
			such it is a systematic method for identification, assessment and 
			control of safety hazards. The methodology is not limited to the 
			food industry and has also been suggested for the pharmaceutical, 
			chemical, aviation and car industry. In the scope of this 
			methodology hazards are defined as biological, chemical or physical 
			agents or operations that are likely to cause illness or injury if 
			not controlled. The purpose of HACCP in the pharmaceutical 
			manufacturing process is to ensure products with quality as 
			specified that are efficient and safe for use. GMPs and HACCP are 
			not contradictory but rather complementary. Implementation of Good 
			Manufacturing Practices is facilitated through HACCP methodology 
			whereas a GMP environment with well-structured procedures 
			facilitates implementation of HACCP. 
HACCP Principles and Methodology
HACCP principles and methodology are very well standardized which 
			facilitates training and applying the HACCP system. The system 
			addresses all steps from raw material production, procurement and 
			handling, to manufacturing, distribution and consumption of the 
			finished product. HACCP principles were defined by the National 
			Advisory Committee on Microbiological Criteria for Foods (NACMCF) in 
			1992. The document was reviewed and updated by the Committee in 1997 
			(32) and as a result HACCP was defined as a "systematic approach to 
			evaluate, identify and control food safety hazards". The HACCP 
			system is based on seven principles: 
- Conduct a hazard analysis.
- Determine critical control points (CCPs).
- Establish critical limits for each CCP.
- Establish a monitoring system for the CCPs.
- Establish corrective actions when the CCP is not under control.
- Establish verification procedure to confirm HACCP is working effectively.
- Establish documentation concerning all procedures and records on these principles and their application.
Figures 9 show a flow diagram with steps for implementation of 
			the HACCP analysis. Some preparation work is needed before the 
			hazard identification and analysis start.
Preliminary Task
1. Develop a HACCP Plan
After the project has been initiated by management and after 
			management has defined a project leader a preliminary plan is 
			drafted by the project leader. It should be product or process 
			specific to address specific situations in the project and it should 
			also be in line and derived from a company's generic Risk Management 
			Master Plan or HACCP Master Plan to ensure efficiency and 
			consistency throughout the company. The plan should include:
- The scope of the project,
- steps, tasks,
- deliverables,
- responsibilities and
- a time line.
2. Assemble a HACCP Process Team and Define a Team Leader
Team members should include subject matter experts with specific 
			knowledge and expertise in pharmaceutical engineering. Preferably 
			team members should represent all affected disciplines, e.g. 
- Research,
- development,
- production,
- sanitation,
- engineering,
- maintenance,
- quality control,
- laboratories,
- quality engineering and
- members of other disciplines directly involved in the plan's day-to-day operation.
The team should also include local personnel who are familiar 
			with capabilities and limitations of the operation. Team members 
			should either have knowledge and experience in HACCP methodology and 
			product safety hazards or should get training. One of the first 
			tasks of the team is to finalize the HACCP plan.
3. Describe the Product or Process and Develop a Flow Diagram of the Process
The description should include the intended use and end users of 
			the product and the distribution method. The intended users of a 
			food or drug product may be the general public or a particular 
			segment of the population, e.g. infants and elderly people. The 
			product description should include a list of specifications e.g., 
			physical and chemical properties. 
A flow diagram should be developed with the purpose of providing 
			a clear, simple outline of the steps in the process which are under 
			the control of the establishment. It should include all process 
			steps such as mixing, drying, cleaning, blending, testing, 
			packaging, labeling, storing and distribution. 
4. Verify the Flow Diagram Onsite
This step compares in a walk-through, the actual operation with 
			the product and process documentation, such as product description 
			and flow diagrams. To ensure objectivity the verification should not 
			be done by the same people who originally developed the flow 
			diagram. Deviations should be corrected in the flow diagram and 
			documented.
			
Implementing HACCP Principles
After the preparation has been done, the seven HACCP principles 
			as outlined previously are implemented. Steps include: 
1. Identify all Potential Hazards
All potential hazards and associated control measures, if 
			available, are identified and documented for each operational step 
			from receipt of raw materials through to release and distribution of 
			the finished product. 
2. Conduct a Hazard Analysis
The purpose of the hazard analysis is to develop a list of 
			hazards which are of such significance that they are reasonably 
			likely to cause injury or illness if not effectively controlled. 
			Hazards that are not reasonably likely to occur would not require 
			further consideration. Potential hazards include:
- Biological,
- chemical and
- physical compounds.
The analysis is done by the HACCP team in a brainstorming meeting 
			on hazard identification followed by a workshop on hazard 
			evaluation.
			
The process of conducting a hazard analysis involves two steps.
			
The first step, hazard identification, lists all potential 
			hazards. This is done through the brainstorming session. The team 
			develops a list of potential biological, chemical or physical 
			hazards.
After the list of potential hazards is assembled, step two the 
			hazard evaluation, is conducted. In a workshop the HACCP team 
			decides which potential hazards must be addressed in the HACCP plan. 
			During this stage each potential hazard is evaluated based on the 
			severity of the potential hazard and its likely occurrence. The 
			occurrence factor also takes into account control measures that are 
			already in place to reduce the probability of occurrence. 
The outcome of this exercise is to decide which identified 
			hazards are critical enough that they are defined as critical 
			control points (CCPs) and control steps are then implemented to 
			reduce the risk to an acceptable level. If there are no hazards that 
			need to be controlled there is no need to establish critical control 
			limits. The project moves directly to establishing monitoring 
			procedures. 
3. Determine Critical Control Points
Once the critical hazards are identified the team identifies 
			control measures for reduction or elimination of each critical 
			hazard. Areas that should be considered are: 
- Material,
- equipment malfunction,
- failures of sensors,
- human errors,
- power failures and
- external impacts such as natural forces, e.g., lightning or wind.
Control steps are identified for all critical hazards where no 
			control measure exists. Complete and accurate identification of CCPs 
			is fundamental to controlling hazards. The information developed 
			during the hazard analysis is essential for the HACCP team in 
			identifying which steps in the process are CCPs. One strategy to 
			facilitate the identification of each CCP is the use of a CCP 
			decision tree. Figure 9 shows an example of such a decision tree 
			with three questions to answer. 
Important questions to ask are:
- Does this step involve a hazard of sufficient risk and severity to warrant its control?
- Does a control point for the hazard exist?
- Is control at this step necessary to prevent, eliminate or reduce the risk of the hazard to consumers?
If all questions are answered with yes, a critical control is 
			defined for the hazard. 

Figure 9: Decision Tree to Identify Critical Control Points (From 
			Ref. 32)
4. Establish Critical Limits for Each Control Point
Critical limits should be established for each control point. A 
			critical limit is a maximum and/or minimum value to which a 
			biological, chemical or physical parameter must be controlled at a 
			CCP to prevent, eliminate or reduce to an acceptable level, the 
			occurrence of a food safety hazard. Critical limits may be based on:
			
- Temperature,
- time,
- humidity,
- salt concentration,
- viscosity,
- pH or
- sensory parameters.
The limits should be scientifically justified. 
Before the project moves to the next step, the remaining risk 
			after implementing CCPs and critical control is evaluated and the 
			team repeats the risk evaluation.
5. Establish a Monitoring Procedure
Monitoring is a planned sequence of observations or measurements 
			to assess whether a CCP is under control and to produce an accurate 
			record for future use in verification. The monitoring system must be 
			able to detect loss of control at the CCP. It should be either 
			continuous or done at a sufficient frequency that the detection is 
			available in time to ensure that corrections are possible before any 
			harm occurs. To avoid violation of limits as much as possible, 
			tighter control limits should be defined where corrective actions 
			are initiated before the critical limit is exceeded. All records and 
			documents associated with CCP monitoring should be dated and signed 
			or initiated by the person doing the monitoring. Examples of 
			monitoring activities include: 
- Visual observations and
- measurement of temperature, time, pH and moisture level.
6. Establish Corrective Actions
For each observed limit violation a corrective action should be 
			initiated. Subject matter experts should determine the root cause 
			for the violation and suggest corrective actions. Corrective actions 
			should include the following elements: 
- Determine and correct the cause of non-compliance.
- Determine the disposition of a non-compliant product.
- Record the corrective actions that have been taken.
Specific corrective actions should be developed in advance for 
			each CCP and included in the HACCP plan. As a minimum, the HACCP 
			plan should specify: 
- What is done when a deviation occurs,
- who is responsible for implementing the corrective actions, and
- that a record will be developed and maintained of the actions taken.
The corrective action should be extended to similar CCPs to avoid 
			further violation of limits. The action plan should be verified for 
			efficiency. 
7. Establish Verification Procedures
Verification is defined as those activities, other than 
			monitoring, that determine the validity of the HACCP plan and ensure 
			that the system is operating according to the plan. Another 
			important aspect of verification is the initial validation of the 
			HACCP plan to determine: 
- That the plan is scientifically and technically sound.
- That all hazards have been identified and that the HACCP plan is properly implemented.
- That these hazards will be effectively controlled.
Verification procedures should be implemented to determine 
			whether the HACCP system is working effectively or not. Examples for 
			verification activities include review of the HACCP plan for 
			completeness, CCP monitoring records, deviations and corrections, 
			validation of critical limits to confirm that they are adequate to 
			control significant hazards and confirmation that CCPs are kept 
			under control. Verification should be conducted, e.g., routinely or 
			on an unannounced basis, to confirm that changes have been 
			implemented correctly after the HACCP plan has been modified and to 
			assess whether a HACCP plan should be modified due to a change in 
			the process equipment. Verification records can include, for 
			example, the HACCP plan and the person(s) responsible for 
			administering and updating the HACCP plan, certification that 
			monitoring equipment is properly calibrated and in working order and 
			training and knowledge of individuals responsible for monitoring 
			CCPs.
8. Document and Communicate all Activities
Accurate documentation and communication is essential for the 
			success of the HACCP project. Documentation should be developed 
			according to the progress of the project and not just at the end. 
			Important steps should be communicated to everybody who is affected 
			by the project throughout the development and at the end of the 
			project.
Records should be retained to document that the HACCP project has 
			been conducted according to documented HACCP requirements. They are 
			unavoidable to demonstrate compliance in case of any product 
			liability issues. Records can be retained in any format, e.g., paper 
			and electronic versions. Examples for records that should be 
			retained include:
- A summary of the hazard analysis, including the rationale for determining hazards and control measures.
- The HACCP plan.
- Training records of the key project leader and HACCP team members.
- Records generated during the operation of the plan.
Hazard and Operability Studies (HAZOPs)
HAZOP examines a planned or existing product, process, procedure 
			or system. It identifies risks to people, equipment and environment. 
			HAZOP also includes steps for risk mitigation. The HAZOP team 
			identifies failure modes of a process or system and possible causes 
			and consequences similar to FMEA. While FMEA starts by identifying 
			failure modes, HAZOP considers unwanted outcomes and deviations from 
			intended outcomes and works back to possible causes. 
Characteristic for a HAZOP process is the use of guide words such 
			as "No or Not, More, Less, Part of and Compatible".
HAZOP was initially developed to analyze chemical process systems 
			and was extended to other complex mechanical, electronic and 
			software systems. It is usually undertaken during the design stage 
			of software and hardware development. 
Steps of HAZOPs include:
- Appointment of project leader and project team. The team should include personnel not directly involved in the design of the project or process.
- Definition of objectives.
- Establishing a set of guide words.
- Collection of the required documentation.
- Splitting the system or process into smaller pieces and subsystems and reviewing the relevant documentation.
- Defining and recording deviations, possible causes, actions to address the identified problem and person(s) responsible for the corrective action.
- Evaluating the remaining risk for deviations that cannot be addressed.
Preliminary Hazard Analysis (PHA) and 
			Preliminary Risk Analysis (PRA)
Preliminary Hazard Analysis (PHA) is a qualitative, inductive 
			tool for risk analysis. Sometimes PRA and PHA are interchangeably 
			used where PRA includes an evaluation of impact and probability. 
			PRA/PHA are based on applying prior experience or knowledge of 
			hazards to identify future hazards. They are especially useful to 
			identify and reduce risks early in a new or changed process. In the 
			context of this chapter we also mean PHA when we talk about PRA.
Steps of a PRA methodology include:
1. Form a Project Team
As the success of the method relies on experience with historical 
			knowledge, team members should include subject matter experts with 
			experience in similar projects. If such information is not available 
			external consultants should be hired. The team leader should have 
			experience in FTA projects. 
2. Create a Project Plan
The plan is created by the team under the supervision of the team 
			leader. It includes background information on why the project has 
			been initiated and describes the approach the risk project will 
			follow as well as the scope, responsibilities, tasks and 
			deliverables. A schedule is also included. The plan follows the 
			rules of the company's Risk Management Master Plan. The plan also 
			describes the approach to define which activities will be analyzed.
3. Describe the Situation
The situation is described by the teams technical subject matter 
			experts. All relevant information is collected and distributed to 
			other team members in preparation for the hazard identification 
			step. The package also includes a proposal on which part of the 
			project will be covered by the PRA methodology. Furthermore the 
			preparation package also includes forms and recommendations on how 
			to complete them in preparation for the hazard identification 
			meeting. For complex projects a special training should be organized 
			to ensure that the process is well understood and so that the team 
			members can give meaningful inputs. 
4. Identify Hazards
Hazards are best identified in a brainstorming meeting. All 
			suggestions for potential hazards are collected and documented. The 
			suggested hazards are grouped into categories, for example, product 
			characteristics, processing steps or operational phases, such as 
			start-up or normal operation. When all potential hazards have been 
			identified and categorized they are reviewed and compared with each 
			other. The team leader will put all suggested potential hazards up 
			for discussion and the group decides to leave them or remove them 
			from the list. This should ensure that only credible failures are 
			retained. An important criterion on whether to leave a hazard on the 
			list or not is if there are currently controls in place to reduce 
			the risk. Only listed hazards without sufficient control will stay 
			on the list. 
5. Estimate the Probability of Occurrence and Severity
The final risk is estimated through looking at the probability of 
			occurrence and the severity of identified hazards. For probability 
			and severity assessment, controls already in place are considered. 
			Results are either expressed qualitatively, e.g., high, medium and 
			low or through more specific descriptions or quantitatively if 
			sufficient data are available. 
6. Prioritize Risks for Control
For hazards exceeding the acceptable risk thresholds the team 
			defines controls to reduce the risk. The residual risks are 
			evaluated again using the same criteria as before.
7. Prepare a Report
The report should include a description of the process, the study 
			objectives and scope, the methodology and the identified hazards 
			with justifications. The report should also include the result of 
			risk assessment with justifications and additional controls put in 
			place for hazards with too high risks.
Steps for Effective Risk Management
Previous chapters of this tutorial gave an overview on regulatory 
			requirements. We also described the ICH Q9 process for risk 
			management. In addition various tools and methodologies have been 
			presented on how to implement risk assessment and risk management 
			for various situations. While most tools have advantages but also 
			limitations this chapter describes a generic approach and 
			recommended steps for risk management. The overall process and 
			individual steps are outlined in Figure 10 with more details on each 
			step following in this chapter.

Figure 10: Risk Management Process and Steps
The process is initiated by management based on inputs from 
			functional managers. Management also appoints a project leader who 
			drafts a preliminary project plan. The project leader assembles a 
			project team that finalizes the project plan. 
In the risk analysis step team members suggest, sort, combine and 
			prioritize hazards and harms. Team members then determine the risk 
			using severity and probability and optional detectability as 
			criteria. If the risk is below the acceptance criteria the project 
			goes into the monitoring phase or is discontinued. This is to 
			monitor the process for some time to verify that the risk level was 
			correctly determined and/or to check if new hazards arise.
If the risk is higher than the acceptance criteria a risk 
			mitigation plan is initiated and implemented. The residual risk is 
			determined using the same procedure and criteria as for the first 
			evaluation. 
The outcome of the risk assessment and management is documented 
			and communicated during and at the end of the process. 
Step 1: Project Preparation and Planning
The risk management process requires detailed preparation and 
			planning. This step includes project initiation and identification 
			of a project manager and a project team.
Project Initiation
A risk management project can be proposed by anybody. The 
			proposal should be forwarded to functional managers who review it 
			and then forward it to higher management. The proposal should 
			include:
- Description of the potential risk management project.
- Definition of potential problems with some examples for hazards and harms.
- Background information.
- Benefits of the proposed project.
- List of departments that should be part of the project.
Identification of the Project Manager and Team
Once the decision is made to initiate a risk management project 
			management identifies a project leader. Selection criteria for the 
			project owner are:
- Experienced in risk management.
- Project management skills.
- Excellent communication skills.
- Knowledge of the organization, system, process or application being assessed.
- Ability to manage people without direct reporting.
Tasks of the project owner include:
- With the help of functional managers selects a risk management team.
- Manages the entire process.
- Ensures necessary resources.
- Organizes and chairs team meetings.
- Drafts the risk management project plan.
- Represents the team in management meetings.
- Communicates the status and outcome of the project to management and peers.
One of the first tasks of the project leader is to recruit a 
			team. The team should include members from all affected areas and 
			groups.
Examples are:
- Affected operations (product development, manufacturing).
- Project management.
- Information Services (IS).
- Quality Assurance (QA).
- Legal department.
- Quality Control (QC).
- Plant safety, maintenance and engineering.
- Regulatory affairs.
- Sales and marketing.
- Accounting.
- Suppliers (optional).
Team members should be subject matter experts with at least five 
			or more years experience in the related subject. General 
			responsibilities of the risk management team are defined for each 
			function in the Risk Management Master Plan. 
Define Team Responsibilities
Risk management involves several departments, functions and 
			personnel which requires good organization. For example, tasks and 
			responsibilities should be well defined for everybody. The Risk 
			Management Master Plan can be used as a guideline where the master 
			plan allocates responsibilities only to job functions and not to 
			individual persons. For a specific project, responsibilities can be 
			defined for individuals by name in addition to functions. 
Management
- Provides evidence of their commitment to the risk management process.
- Provides necessary resources.
- Defines and documents the policy for determining criteria for risk acceptability.
- Approves the Risk Management Master Plan.
System User Departments
- Contribute to development and maintenance of Risk Management Project Plans.
- Create and maintain equipment inventory.
- Give inputs on potential hazards with estimation on severity and probability for initial RM.
- Monitor efficiency of ongoing RM and give inputs on new hazards.
Plant Safety/Maintenance/Engineering
- Advises the facility/laboratory on possible hazards and harms related to environment and staff safety.
Information Services (IS)
- Advises the facility on possible hazards and harms related to IT, e.g., security.
- Participates in risk assessment and mitigation.
- Reviews Risk Management Project Plans related to networks.
Risk Management Team
- Develops and maintains the Risk Management Project Plan.
- Provides expertise to develop and implement RM for processes and systems during development and during initial and ongoing use.
- Responsible for risk assessment and the final decision on if and how to mitigate risks.
Quality Assurance (QA)
- Provides quality assurance expertise in the creation of the risk management plans.
- Monitors regulatory requirements and develops and updates company policies for RM.
- Develops and coordinates a training program on RM.
Validation Team
- Gives inputs for risk analysis and participates in risk assessment.
- Reviews and approves individual Risk Management Project Plans and deliverables.
Consultants
- Some of the activities can be outsourced to consultants, e.g., identification and classification of risks.
Vendors
- Inform users on potential risks arising from known software bugs and provide workaround solutions.
All
- Get trained on risk assessment and management.
- Provide inputs on hazards and possible harms for new and ongoing risk management projects.
Create a Risk Management Project Plan
Using the company's Risk Management Master Plan as a source 
			document, the project leader with the help of the team creates the 
			Risk Management Project Plan. While the Risk Management Master Plan 
			(RMMP) is a framework and applicable to all projects, individual 
			projects should be covered by the Risk Management Project Plan 
			(RMPP). The relationship between both these plans is shown in Figure 
			11.

Figure 11: Risk Management Master Plan and Risk Management Project Plan
The project plan outlines how risk assessment is conducted, the 
			steps and procedures the project team will implement and who is 
			doing what. It also includes a time schedule and defines 
			deliverables for each step. The draft also includes proposals for 
			risk thresholds. The project leader presents the plan to management. 
			Management reviews the plan and discusses the suggested steps and 
			risk thresholds with the team in a meeting. 
This is the most important step in the entire project. The 
			acceptable risk threshold will determine the costs for reducing the 
			risk but also associated costs or other problems that can arise if 
			risks are not reduced. Functional managers from accounting, QA and 
			operations should indicate priorities for how much risk the company 
			can take. Most likely different functions will have different 
			priorities. For example, when looking at the graph in Figure 1x QA 
			tends more towards the right side of the graph with 100% quality, 
			whereas finance most likely wants to save on project cost which is 
			only possible if a trade-off is made between risk and quality. 
The Risk Management Project Plan should include chapters on:
Purpose
- The purpose should be specific to the system and should include a short system description.
Scope
- The scope defines what is and what is not covered by the plan. It also documents constraints and limitations.
Responsibilities
- This section describes responsibilities of corporate management, the operations manager and staff, IT managers and staff and the risk management team. Unlike the master plan the project plan lists responsible people by name AND function, rather than by function only.
Approach
- Describes the approach taken for managing the risk.
Risk Identification
- Describes how risks, hazards and potential harms are identified and documented. Includes tables with risks, hazards, harms and suggestions for mitigation.
Risk Evaluation
- Describes how risks are evaluated, categorized, prioritized and documented. It includes matrices with risks, categories for probability and severity and risk codes.
Risk Threshold
- Documents risk threshold values for the project.
Risk Mitigation
- Evaluates alternatives of risk mitigation versus costs. Describes actions in case mitigations are required. It also includes a time schedule for actions and estimates and documents residual risk priority numbers after mitigation.
Risk Acceptance
- Compares risk threshold as originally defined with the RPN obtained after mitigation. Based on the outcome the residual risk is accepted rejected.
Ongoing Monitoring
- Describes how risks are monitored, reported and documented during use of the system. Describes the actions in case new hazards are reported or if the risk level has changed.
Project Schedule
- Outlines action items with owners.
Step 2: Risk Identification
Step 2 in the risk management process is risk identification. It 
			should answer the question: What are the potential problems that 
			could occur? All activities in a process under consideration are 
			documented. Potential risks are identified by the project team under 
			the leadership of the project leader. If there is little or no 
			experience with risk identification within a company, outside 
			resources who have worked on similar projects should be invited to 
			give their opinion. They can help to identify or discover potential 
			problems based on experience with similar projects. The output of 
			this phase is the input for risk evaluation. 
Inputs for risk identification are: 
- Customer complaints.
- Failure investigations.
- Corrective and preventive action plans.
- Specifications for processes and systems.
- Experience with the same process or system already installed and running.
- Experience with similar processes and systems.
- Experience with suppliers of the system and suppliers of material used for the process.
- Failure rates of the same or similar systems and processes.
- Trends of failures.
- System and process validation reports.
- Service records and trends.
- Internal and external audit results.
- FDA inspection reports.
Inputs can come from engineers, operators of equipment and 
			processes, the validation group, IT administrators or from QA 
			personal, e.g., as a result of internal and external audits or 
			inspections. 
The project team collects inputs on potential hazards with 
			possible harms. Information is collected during a brainstorming 
			meeting. All inputs should be accepted and documented. The project 
			leader should make sure that all ideas are well understood by team 
			members. Initial documentation can be made on a flip chart or self 
			adhesive notes that can be easily moved around to group similar 
			risks into categories and to eliminate double-quoted identical risks 
			or combine similar risks into single ones. 
The team prioritizes all risks that are considered for follow-up. 
			The list of selected risks can be compared with a checklist that has 
			been created from other projects. This should ensure that nothing 
			important has been left out.
For final documentation a form as shown in the table in Figure 12 
			or similar should be used with entry fields for the person who made 
			the entry, risk description, impact on system availability, data 
			integrity, compliance, typical situations of occurrence and 
			suggestions for mitigation. 
| Person: Date: | System/Process ID: | Location: | 
| Risk description, hazard, typical situations of occurrence | Possible harm | Suggestion for risk control | 
Figure 12: Form for Risk Identification 
At this point typical situations of occurrence, possible harms 
			and suggestions for risk control are described expressing 
			everybody's thoughts and experience rather than thinking about 
			categories. For example, contributors should describe the estimated 
			time intervals and special circumstances under which the process or 
			system can fail.
			
Step 3: Risk Evaluation
After information on risks has been collected, the risk 
			evaluation phase starts. This phase compares the identified risks 
			against given risk criteria. It should be determined which risks are 
			the most important ones to focus on and put into the risk mitigation 
			plan. The output of this phase is a quantitative estimate of risk or 
			a qualitative description of a range of risks. Most critical is to 
			use objective ranking criteria for severity and probability. For 
			more details on how this is best achieved see the section 
			"Approaches for Risk Management" in the chapter "Criteria for 
			Severity, Probability and Risk Acceptance". 
For implementation the project leader calls for a workshop. Each 
			risk as prioritized and documented in the identification phase is 
			presented by the risk owner who also makes a proposal for numerical 
			severity and probability factors together with a justification. The 
			proposal is discussed with the team and either accepted as it is, 
			accepted after a change of severity and/or probability factors, or 
			rejected. Rejection should rarely happen because the risk has been 
			prioritized in a previous meeting. One reason for removing a risk 
			from the list would be if the assumptions have changed since the 
			risk identification step.
Numbers are associated to the levels and the overall risk 
			priority number (RPN) is calculated. Figure 13 shows a template on 
			how to document the impact (severity) of non-patient business risk, 
			the impact on patient health and the probability. 
The RPN is calculated using the formula:
RPN = S (Business) x S (Patient) x P
On a scale of 1 to 27 the RPN is calculated as 18. 
| Person: Date: | System ID: | Location: | ||
| Risk description /ID | Impact on patient health (Level 1-3) | Impact on business continuity (Level 1-3) | Occurrence (Level 1-5) | Risk priority number | 
| XYZ423 | 3 | 2 | 3 | 18 | 
Figure 13: Form for Risk Evaluation 
Step 4: Risk Acceptance
Risk acceptance is a formal decision to accept a risk. In this 
			step we analyze the countermeasures that we put in the risk response 
			table based on risk priorities. Starting point is the risk priority 
			number as calculated from probability and severity and the risk 
			threshold as defined for the project. The risks should be put into 
			three categories as defined in Figure 14.
The impact on each identified risk is evaluated using the same 
			criteria as defined in Step 3. RPNs are calculated and compared with 
			the original risk threshold. Residual risks are accepted as long as 
			the risk priority number is below the risk threshold. Lets assume 
			the RT for the project is defined as 5 on a scale of 1-10. The 
			normalized RPN is: 
16/27 x 10 = 6.6
This means the risk is not acceptable. 
| Factor 8 and 
					Lower: Code 1 | Routinely accepted, no action taken. | 
| Factor 9-16: Code 2 | Operation requires written, time-limited waiver endorsed by management. Mitigation subject to cost/benefit analysis. | 
| Factor Higher than 16: Code 3 | Not accepted. Mitigation required. Alternative approaches should be evaluated. | 
Figure 14: Definition of Risk Codes and Consequences 
All risks with factors higher than 16 (Code 3 = High Risk) should be reduced 
or eliminated and all risks with factors higher than 8 (Code 2 = medium risk) 
should be considered for mitigation and are subject to a cost benefit analysis. 
Step 5: Risk Mitigation
When the risk as evaluated in the previous step is not 
			acceptable, alternatives on how to mitigate risks should be 
			evaluated. This phase is also called Risk Treatment.
Figure 15 is used to document the mitigation strategy, costs for 
			mitigation and non-mitigation and the decision whether to mitigate 
			the risk or not. 
| Person: Date: | System ID: | Location: | ||
| Risk description /ID | Mitigation strategy | Cost of mitigation | Cost of non-mitigation | Mitigate yes/no | 
Figure 15: Form for Risk Mitigation
Possibilities to Mitigate Risks
There are different ways and approaches to mitigate risks.
All risk mitigation options should be considered and can be 
			combined.
			
They include:
- Removing the risk source (eliminating the risk).
- Changing the likelihood.
- Changing the consequences.
- Ensuring that the risk is detected and can be treated when it occurs.
- Sharing the risk with other parties.
Care should be taken that mitigation strategies do not introduce 
			new risks into the process or increase existing risks in other 
			areas.
After the risk is reduced it is evaluated again using the same 
			criteria as before. If the risk was acceptable the project moves 
			along to the last step for documentation, communication and ongoing 
			review for possible changes. 
Estimating Costs vs. Benefits
The initial and ongoing costs for the best alternative should be 
			estimated and compared with the estimated costs of non-mitigation. 
			For risk codes 2 (medium risk) this comparison should be the basis 
			for the decision whether to mitigate risks or not. The rationale 
			behind the decision should be well justified and documented. 
It is important to estimate the cost for mitigation as well as 
			potential losses through non-mitigation. Losses for non-mitigation 
			should include real or direct costs and tangible or indirect costs. 
			Real costs are loss of revenue and are relatively easy to estimate. 
			Tangible costs are more difficult to estimate. They can include 
			damage to a company's reputation or appearing on the FDA's radar 
			after one or more failed FDA inspection.
Risk Mitigation Plan
Once the decision to mitigate the risk has been made and the 
			strategy is identified, a mitigation plan should be developed. The 
			plan should describe: 
- Mitigation options.
- How options will be implemented.
- Resource requirements.
- Tasks.
- Owners.
- Deliverables.
- Schedule.
- Performance measures.
- Required documentation.
- Communication requirements.
After the plan is implemented the residual risk is evaluated and 
			is subject to monitoring.
Step 6: Ongoing Monitoring, Reviews and Updates
Once the plan is in place and the system is running, the 
			effectiveness of the plan should be monitored, reviewed and adjusted 
			if necessary. The monitoring program should also help to identify 
			previously unrecognized hazards. These could have been introduced by 
			changing processes or introducing new technologies.
The monitoring program should check if risk priority numbers have 
			changed to either higher or lower values. Users and IT professionals 
			gain a lot of experience that can be used to further optimize the 
			effectiveness. If factors exceed the previous specified limit, 
			mitigation strategies should be evaluated. If higher values decrease 
			below the threshold, mitigation may no longer be necessary which can 
			save operating costs. 
Contributors use the form in Figure 16 to document observations 
			and to make recommendations. They should also make a recommendation 
			if the change should be implemented urgently if it is time critical.
			
| Person: Date: | System ID: | Location: | ||
| Risk description /ID | Observation | Recommendation for change | Urgent yes/no | |
Figure 16: Form to Recommend Changes 
The risk management team evaluates the recommendations made by 
			contributors. The team meets monthly if there are no recommendations 
			for changes classified as 'urgent'. In the case of an urgent 
			recommendation for a change the team meets and evaluates the change 
			within a week. Changes or additions are documented using the form in 
			Figure 17. 
| Person: Date: | System ID: | Location: | 
| Risk description /ID | Change/Addition | Urgent yes/no | 
Figure 18: Form to Document Changes 
Step 7: Documentation and Communication
Regulatory agencies strongly suggest basing decisions for details 
			of compliance with GxP on a justified and documented risk 
			assessment. Therefore documentation is very important. Documentation 
			is also important to justify investments as they may be required to 
			meet business and compliance requirements. Complete documentation 
			for risk management should include: 
- Risk Management Master Plan - This shows your company's approach towards risk assessment and risk management.
- Risk Management Project Plan - This shows the plan for specific system and mitigation strategies.
- Lists with description of risk categories, ranking criteria and results of ranking.
- Justification for not mitigating risks with high factors.
- Risk mitigation plans.
- Mitigation actions taken
- Review reports.
The information should be communicated with everybody who may be 
			affected by the project. The information should not only be shared 
			toward the end of the project but this should be ongoing from the 
			start. Most important is to openly share all information that leads 
			to decisions about factors for probability and severity factors and 
			whether to mitigate certain risks or not. 
Application Examples
Overview
The Risk Management Process can be applied for:
- Design and development of a product or process.
- Selection and assessment of suppliers.
- Training, especially proof of effectiveness.
- Risk-based computer validation.
- Risk-based qualification of analytical equipment.
- Part 11 compliance.
- Pharmaceutical manufacturing.
- Scheduling internal audits.
- Starting material - qualification and handling.
- Validation of analytical procedures
- Qualification of equipment
- Change control to introduce new starting material.
- Archiving electronic records.
To be completed later
Glossary
Some of the risk-based definitions are original or derived from 
			either ISO/IEC Guide 51:1999 or ANSI/AAMI/ISO 14971:2000.
CCP Decision Tree
A sequence of questions to assist in determining whether a 
			control point is a CCP (Ref. 32).
Critical Control Limit (CCL)
A maximum and/or minimum value to which a biological, chemical or 
			physical parameter must be controlled (Ref. 32).
Control Measure
Any action or activity that can be used to prevent, eliminate or 
			reduce a significant hazard (Ref. 32).
Corrective Action
Procedures followed when a deviation occurs (Ref. 32).
Critical Control Point (CCP)
A step at which control can be applied and is essential to 
			prevent or eliminate a (pharmaceutical) quality hazard or reduce it 
			to an acceptable level (Ref. 30).
Failure
Termination of the ability of an item to perform a required 
			function (IEC 60812:20067).
Failure Mode
Manner in which an item fails (IEC 60812:20067).
FMEA - Failure Modes and Effects Analysis
Used to identify failure modes and their consequences or effects. 
			FMEA is a bottom-up technique: What can go wrong on a low level 
			component and how this impacts the system or application.
FMECA - Failure Modes, Effects and Criticality Analysis
Adds evaluation of the criticality including severity, occurrence 
			and detectability to the FMEA. 
FTA - Fault Tree Analysis
Top-down technique. The analyst looks at the high-level system 
			failure and proceeds down into the system to trace failure paths.
			
HACCP � Hazard Analysis and Critical Control Points
A systematic approach to the identification, evaluation and 
			control of food safety hazards (Ref. 32).
HACCP Plan
The written document which is based upon the principles of HACCP 
			and which delineates the procedures to be followed (Ref. 32).
HACCP System
The result of the implementation of the HACCP Plan (Ref. 32).
Harm
Physical injury or damage to the health of people, or damage to 
			property or the environment (ISO 14971).
Hazard
Potential source of harm (ISO 14971). 
In the context of HACCP: Any circumstance in the production, control and distribution of a (pharmaceutical) product which can cause an adverse health effect (Ref. 30).
Hazard: A biological, chemical or physical agent that is reasonably likely to cause illness or injury in the absence of its control (Ref. 32).
In the context of HACCP: Any circumstance in the production, control and distribution of a (pharmaceutical) product which can cause an adverse health effect (Ref. 30).
Hazard: A biological, chemical or physical agent that is reasonably likely to cause illness or injury in the absence of its control (Ref. 32).
Hazard Analysis
The process of collecting and evaluating information on hazards 
			associated with the food under consideration to decide which are 
			significant and must be addressed in the HACCP plan (Ref. 32).
Hazard Monitoring
To conduct a planned sequence of observations or measurements to 
			assess whether a CCP is under control and to produce an accurate 
			record for future use in verification (Ref. 32).
Validation (related to HACCP)
That element of verification focused on collecting and evaluating 
			scientific and technical information to determine if the HACCP plan, 
			when properly implemented, will effectively control the hazards 
			(Ref. 32).
Verification (related to HACCP)
Those activities, other than monitoring, that determine the 
			validity of the HACCP plan and that the system is operating 
			according to the plan (Ref. 32).
NIST
National Institute of Standards and Technology.
P/I
Probability/Impact equal to RPN (Risk Priority Number).
PIC/S
The Pharmaceutical Inspection Convention and Pharmaceutical 
			Inspection Co-operation Scheme (jointly referred to as PIC/S).
PHA - Preliminary Hazard Analysis
Can be used to identify hazards and to guide development of 
			countermeasures to mitigate the risk posed by these hazards.
PRA - Preliminary risk analysis
Probabilistic risk assessment.
Probability of Detection
Evaluates the probability of realizing that the hazard has 
			occurred before the resultant harm to the patient has occurred.
QRAS - Quantitative Risk Assessment System
Developed for NASA by the University of Maryland.
QU
Quality Unit.
Residual Risk
Risk remaining after protective measures have been taken (ISO 
			14971).
Risk
Combination of the probability of occurrence of harm and the 
			severity of that harm. Combination of the probability of harm and 
			the severity of that harm (ISO 14971:2007).
Risk Acceptance
The decision to accept risk (ISO Guide 73).
Risk Analysis
Systematic use of available information to identify hazards and 
			to estimate the risk (ISO 14971:2007).
Risk Assessment
A systematic process of organizing information to support a risk 
			decision to be made within a risk management process. It consists of 
			the identification of the hazards, and the analysis and evaluation 
			of risks associated with the exposure of these hazards (ICH Q9).
Overall process of risk identification, risk analysis and evaluation (ISO 14971:2007).
Overall process of risk identification, risk analysis and evaluation (ISO 14971:2007).
Risk Communication
The sharing of information about risks and risk management 
			between the decision maker and the stakeholder.
Risk Control
The process through which decisions are reached and implemented 
			for reducing risks to, or maintaining risks within, specified 
			limits.
			
Process in which decisions are made and measures implemented by which risks are reduced to, or maintained within, specified levels (ISO 14971:2007).
Process in which decisions are made and measures implemented by which risks are reduced to, or maintained within, specified levels (ISO 14971:2007).
Risk Criteria
Terms or reference against which the significance of a risk is 
			evaluated (ISO Guide 73:2009).
Risk Estimation
Process used to assign values to the probability of occurrence of 
			harm and the severity of that harm (ISO 14971:2007).
Risk Evaluation
Process of comparing the estimated risk against given risk 
			criteria to determine the acceptability of the risk (ISO 
			14971:2007).
The comparison of the estimated risk to given risk criteria using a quantitative or qualitative scale to determine the significance of risk.
The comparison of the estimated risk to given risk criteria using a quantitative or qualitative scale to determine the significance of risk.
Risk Identification
The systematic use of information to identify potential sources 
			of harm (hazards) referring to the risk question or problem 
			description.
Risk Index
A semi-quantitative measure of risk which is an estimate derived 
			using a scoring approach using ordinal scales (IEC/ISO 31010).
Risk Level
A quantitative estimate that describes the level of degree of 
			risk. The value is added based on quantitative values assigned for 
			public health (severity), regulatory risk and business risk. For the 
			purpose of this standard the risk is expressed as high, medium or 
			low based on the degree of regulatory risk and patient/user risk.
Risk Management
Systematic application of management policies, procedures and 
			practices to the tasks of analyzing, evaluating, controlling and 
			monitoring risks (ISO 14971:2007).
Risk Reduction
Actions taken to lessen the probability of occurrence of harm and 
			the severity of that harm.
Risk Review
Review of monitoring of output/results of the risk management 
			process considering (if appropriate) new knowledge and experience 
			with the risk.
Risk Priority Number
Measure of overall risk. It is obtained by multiplying the rating 
			of severity, occurrence (and probability of non-detection). The 
			higher the number the more serious the risk. 
Risk Treatment
Process of selection and implementation of measures to modify 
			risk.
RR
Risk Rating.
RT
Risk Threshold. 
Severity
Measure of the possible consequences of a hazard (ISO 
			14971:2007).
Tolerable Risk
Risk that is accepted in a given context based on the current 
			values of society.
RMMP - Risk Management Master Plan
Framework which is applicable to all projects. Used as a source 
			to draft Risk Management Project Plans.
RMPP - Risk Management Project Plan
While the Risk Management Master Plan (RMMP) is a framework and 
			applicable to all projects, individual projects should be covered by 
			a Risk Management Project Plan (RMPP). It outlines risk management 
			activities specific to the project. The RM Master Plan should be 
			used to draft this plan.
Stakeholder
Person or organization that can affect, be affected by, or 
			perceived themselves to be affected by, a decision or activity (ISO 
			Guide 73:2009).
References
- The European Council Directive 93/42/EEC of 14 June 1993 Concerning Medical Devices.
- FDA 21 CFR 820: "Quality System Regulation (for Devices)".
- EU GMP, Annex 15: "Validation and Qualification", 2010.
- FDA: Pharmaceutical cGMPs for the 21st Century: "A Risk-Based Approach: Second Progress. Report and Implementation Plan", 2003.
- FDA Industry Guidance: "Part 11, Electronic Records; Electronic Signatures - Scope and Application", 2003.
- ICH Q9: "Quality Risk Management", 2005.
- GAMP 4: "Guide for Validation of Automated Systems", 2001.
 For ordering go to: http://www.labcompliance.com/seminars/audio.ispe.org
- GAMP 5: "A Risk-Based Approach to Compliant GxP Computerized Systems", 2008. For ordering go to: http://www.labcompliance.com/seminars/audio.ispe.org
- GHTF: "Implementation of Risk Management Principles and Activities within a Quality Management System", 2005.
- ISO 14791:2007: "Application of Risk Management to Medical Devices".
- ISO 31000: "Risk Management" Principles and Guidelines", 2009.
- ISO 31010: "Risk Assessment Techniques", 2009.
- R. Jones, Pharmaceutical Manufacturing: "How to Understand the Process and Assess the Risks to Patient Safety", Pharmaceutical Engineering, November 2009, 16.
- I. Campbell: "Applying Quality Risk Management Principles to Achieve a Practical Verification Strategy", Pharmaceutical Engineering, November 2009, 24-38.
- L. Huber (15): "Risk-Based Validation of Commercial Off-the-Shelf Computer Systems", Journal of Validation Technology, 11(3), 2005.
- Labcompliance: "Risk Management Master Plan", 2010.
- Labcompliance SOP: "Risk Assessment Used for Systems Used in GxP Environments".
- Labcompliance SOP: "Risk Assessment for Laboratory Systems", 2010.
- Labcompliance SOP: "Risk-Based Qualification of Network Infrastructures".
- Labcompliance Case Studies: "Risk-Based Methodologies for Laboratory Tasks".
- FDA Guidance: "General Principles of Software Validation", (2002).
- FDA Guidance for Industry: "Quality Systems Approach to Pharmaceutical CGMP Regulations", (2006).
- EU GMP, Annex 11: "Using Computerized Systems".
- Pharmaceutical Inspection Convention/Cooperation Scheme (PIC/S): "Good Practices for Computerised Systems in Regulated 'GxP' Environments".
- United States Pharmacopeia: <232> Elemental Impurities (Proposal).232>
- USP Chapter <467> Residual Solvents.467>
- FDA Guidance: "FDA Reviewers and Compliance on Off-The-Shelf Software Use in Medical Devices", 1999.
- FDA Guidance: "Inspections of Quality Systems" (Medical Devices), ORA Inspectional References.
- PIC/S Quality Risk Management: "Implementation of ICH Q9 in the Pharmaceutical Field", 2010.
- Report by WHO Expert Committee on "Specifications for Pharmaceutical Preparation", Annex 7, Application of HACCP Methodology to Pharmaceuticals, 2003.
- FDA Guidance: "Fish and Fisheries Products Hazards and 
				Controls", Appendix 3, 2001.
 http://www.fda.gov/food/guidancecomplianceregulatoryinformation/
 guidancedocuments/seafood/fishandfisheriesproductshazardsandcontrolsguide/
 default.htm
- National Advisory Committee on Microbiological Criteria for 
				Foods, "HACCP Principles and Application Guidelines", 1997.
 http://www.fda.gov/food/foodsafety/HazardAnalysisCriticalControlPointsHACCP/
 ucm114868.htm
- J.L. Vesper: "Risk Assessment and Risk Management in the Pharmaceutical Industry: Clear and Simple", Davis Healthcare International Publishing, LLC, ISBN 1-930114-94-X, 2006.
- Concept Heidelberg: "Risk Management in the Pharmaceutical Industry", Editio Cantor Verlag, 2008, ISBN 978-3-87193-370-7.
- K. O'Donnel and A. Greene: "A Risk Management Solution Designed to Facilitate Risk-Based Qualification, Validation and Change Control Activities within GMP and Pharmaceutical Regulatory Compliance Environments in the EU", Part I: Fundamental Principles, Design Criteria, Outline of Process, Journal GXP Compliance, 10 (4) 12-25 (2006).
- K. O'Donnel and A. Greene, "A Risk Management Solution Designed to Facilitate Risk-Based Qualification, Validation and Change Control Activities Within GMP and Pharmaceutical Regulatory Compliance Environments in the EU", Part II: Tool Scope, Structure, Limitation, Principle Findings and Novel Elements, Journal GXP Compliance, 10 (4) 26-35 (2006).
- ISO/IEC Guide 73:2002: "Risk Management - Vocabulary", Guidelines for Use in Standards".


 
 
 
No comments:
Post a Comment