-------------------------------------------------------

Visit amazon.com for purchasing the book..

Online Donations

Please Donate If You feel this site is good and knowledge
resource of books or literature:

https://www.akshayapatra.org/onlinedonations

You can help the site by posting and/or telling your friends+colleagues about this place :)
Before God we are all equally wise - and equally foolish-Albert Einstein
Get your own Wavy Scroller
(Knowledge is not power; the ability to use that knowledge is power )

© Copyright 2009 Scientist. All rights reserved.

Disclaimer: Scientist-At-Work does not store any files on its server. We only index and link to webpages on, and provided by, other third-party websites.

"Use your head - I did!"

Sunday, January 4, 2009

Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models

Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models

Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models

Product Description

This new book provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics: linear models for continuous outcomes, logistic models for binary outcomes, the Cox model for right-censored survival times, repeated-measures models for longitudinal and hierarchical outcomes, and generalized linear models for counts and other outcomes.

Treating these topics together takes advantage of all they have in common. The authors point out the many-shared elements in the methods they present for selecting, estimating, checking, and interpreting each of these models. They also show that these regression methods deal with confounding, mediation, and interaction of causal effects in essentially the same way.

The examples, analyzed using Stata, are drawn from the biomedical context but generalize to other areas of application. While a first course is statistics is assumed, a chapter reviewing basic statistical methods is included. Some advanced topics are covered but the presentation remains intuitive. A brief introduction to regression analysis of complex surveys and notes for further reading are provided. For many students and researchers learning to use these methods, this one book may be all they need to conduct and interpret multipredictor regression analyses.

The authors are on the faculty in the Division of Biostatistics, Department of Epidemiology and Biostatistics, University of California, San Francisco, and are authors or co-authors of more than 200 methodological as well as applied papers in the biological and biomedical sciences. The senior author, Charles E. McCulloch, is head of the Division and author of Generalized Linear Mixed Models (2003), Generalized, Linear, and Mixed Models (2000), and Variance Components (1992).

download

No comments: